<table>
<thead>
<tr>
<th>Term of Highest Degree</th>
<th>Function</th>
<th>Graph of f(x)</th>
<th>Roots, Multiplicity and Type of Behavior</th>
<th>End Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax^n</td>
<td></td>
<td></td>
<td></td>
<td>$x \to -\infty$ Up</td>
</tr>
<tr>
<td>x^3</td>
<td>$f(x) = (x+2)^3(x-1)^3$</td>
<td></td>
<td>x = -2 Bounce</td>
<td>Up</td>
</tr>
<tr>
<td>x^3</td>
<td>$f(x) = (x+2)^3(x-1)^3$</td>
<td></td>
<td>x = 2 Bounce</td>
<td>Up</td>
</tr>
<tr>
<td>x^3</td>
<td>$f(x) = (x+2)^3(x-1)^3$</td>
<td></td>
<td>$x \to -\infty$ Up</td>
<td></td>
</tr>
<tr>
<td>x^3</td>
<td>$f(x) = -2(x-1)^3$</td>
<td></td>
<td>$x \to -\infty$ Up</td>
<td></td>
</tr>
<tr>
<td>x^3</td>
<td>$f(x) = 2(x+2)^3(x-1)^3$</td>
<td></td>
<td>$x \to -\infty$ Up</td>
<td></td>
</tr>
</tbody>
</table>

Polynot Algebra WS

PAP Algebra 2

Sketch the graph on the chart. (Do not worry about scale.) Fill in the remaining columns of the chart based on your graph.
PAP Algebra 2 Ch. 4 Review

1. Complete the charts below.

Quadratics

<table>
<thead>
<tr>
<th>Odd or Even Symmetry</th>
<th>EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>End behaviors</td>
<td>↑↑ or ↓↓</td>
</tr>
<tr>
<td># of roots</td>
<td>0, 1, 2</td>
</tr>
<tr>
<td>Possible # of extrema</td>
<td>1</td>
</tr>
<tr>
<td>Absolute maximum or minimum</td>
<td>Possible</td>
</tr>
<tr>
<td>domain</td>
<td>IR</td>
</tr>
<tr>
<td>range</td>
<td>depends on max or min</td>
</tr>
</tbody>
</table>

Cubics

<table>
<thead>
<tr>
<th>Odd or Even Symmetry</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>End behaviors</td>
<td>↓↑ or ↑↓</td>
</tr>
<tr>
<td># of roots</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Possible # of extrema</td>
<td>2, 0</td>
</tr>
<tr>
<td>Absolute maximum or minimum</td>
<td>NO</td>
</tr>
<tr>
<td>domain</td>
<td>IR</td>
</tr>
<tr>
<td>range</td>
<td>TR</td>
</tr>
</tbody>
</table>

Quartics

<table>
<thead>
<tr>
<th>Odd or Even Symmetry</th>
<th>even</th>
</tr>
</thead>
<tbody>
<tr>
<td>End behaviors</td>
<td>↑↑ or ↓↓</td>
</tr>
<tr>
<td># of roots</td>
<td>0, 1, 2, 3, 4</td>
</tr>
<tr>
<td>Possible # of extrema</td>
<td>3, 1</td>
</tr>
<tr>
<td>Absolute maximum or minimum</td>
<td>Possible</td>
</tr>
<tr>
<td>domain</td>
<td>IR</td>
</tr>
<tr>
<td>range</td>
<td></td>
</tr>
</tbody>
</table>

Quintics

<table>
<thead>
<tr>
<th>Odd or Even Symmetry</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>End behaviors</td>
<td>↓↑ or ↑↓</td>
</tr>
<tr>
<td># of roots</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Possible # of extrema</td>
<td>4, 2, 0</td>
</tr>
<tr>
<td>Absolute maximum or minimum</td>
<td>NO</td>
</tr>
<tr>
<td>domain</td>
<td>IR</td>
</tr>
</tbody>
</table>

Sketch a Quadratic with zero roots.

Sketch a Cubic with two roots.

Sketch a Quartic with exactly 2 roots.

Sketch a Quintic with 3 roots.
Given the equation in factored form, answer the questions.

2. \(y = 3x(x + 3)(x - 2) \)

Roots: \(x = 0, -3, 2 \)

Write the multiplicity under each root.

End behavior \(\downarrow \uparrow \)
Sketch the graph.

3. \(y = (1 - 2x)(2x + 1)(x + 4) \)

Roots: \(x = \frac{1}{2}, -\frac{1}{2}, -4 \)

Write the multiplicity under each root.

End behavior \(\uparrow \downarrow \)
Sketch the graph.

Standard form: (Show Work!)

\[
\begin{array}{|c|c|}
\hline
x & 3x^3 + 9x^2 - 18x \\
\hline
-2 & -2x \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & 4x^3 - 16x^2 + x + 4 \\
\hline
1 & 2x \\
\hline
\end{array}
\]
4. \[y = (2x + 1)(4x^2 + 4x + 1) \]

\[
\frac{2x + 1}{2x^4 + 4x^2 + 1}
\]

\[
+ \frac{12x}{4x^2 + 4x} + 1
\]

\[
\frac{4}{4}
\]

Roots:

\[
x = -\frac{1}{2},
\]

\[
m = 3
\]

Write the multiplicity under each root.

End behavior \[\downarrow \uparrow \]

Sketch the graph.

5. \[y = -7x(x + 5)^2 \]

Roots:

\[
x = 0, x = -5
\]

Write the multiplicity under each root.

End behavior \[\uparrow \downarrow \]

Sketch the graph.

Standard form: \(y = 8x^3 + 12x^2 + 40x + 1 \)

Standard form: \(y = -7x^3 - 70x^2 - 115x \)
Sketch the graph of \(f(x) \) and describe the end behavior of each graph.

6. \(x^4 \)

7. \(-x^5\)

8. \(x^3 \)

9. \(-x^2\)

10. Describe transformations happening from \(f(x) \). Write a cubic function to represent each and complete a table to 3 points on the graph.

a. \(g(x) = -2f(x) - 3 \)
 - V. Stretch
 - V. Reflection
 - Down 3
 - \(y = -2(x)^3 - 3 \)

b. \(g(x) = f(-2x) + 3 \)
 - H. Reflection
 - H. Comp
 - Up 3
 - \(y = (-2x)^3 + 3 \)

c. \(g(x) = \frac{1}{2}f(x - 5) - 2 \)
 - V. comp
 - Right 5
 - Down 2
 - \(y = \frac{1}{2}(x-5)^3 - 2 \)

11. Describe the transformations from \(p(x) \) to \(m(x) \).

d. \(p(x) = x^3; \ m(x) = 0.5p(-x) + 4 \)
 - V. Comp
 - H. Reflection
 - Up 4

e. \(p(x) = x^4; \ m(x) = -p(0.5x) + 2 \)
 - V. Reflection
 - H. Stretch
 - Up 2
12. List the number of possible extrema for each polynomial.

a. 3rd degree polynomial \(2, 0\)

b. 4th degree polynomial \(3, 1\)

c. 8th degree polynomial \(7, 5, 3, 1\)

d. 15th degree polynomial \(14, 12, 10, 8, 6, 4, 2, 0\)

Circle the function(s) that could model each graph. Describe your reasoning for either eliminating or choosing each function.

13. \(f(x) = x^4 - 2x^3 - 3x^2\)

\(f(x) = -2x^4 - 3x^2 - x\) opens up

\(f(x) = 2(x - 2)(x + 3)(x + 1)\) cross all roots

14. \(f(x) = 4x^6 + 2x^3 - 1\) odd degree

\(f(x) = (x + 2)(x - 5)(x + 3) + 2\)

\(f(x) = -0.25(x + 2)(x - 5)(x + 3) + 2\) ends going \(\downarrow\)
15.
\[f(x) = -2x^6 - 13x^5 + 20x \]
\[f(x) = 2x^6 - 13x^5 + 26x^4 - 7x^3 - 28x^2 + 20x \]
\[f(x) = 2(x+7)(x-4)(x+3)(x-2) - 3 = \text{degree 5} \]

16.
\[f(x) = 3x^5 + 20x^4 - 10x^3 - 240x^2 - 250x + 200 \]
\[f(x) = (2x-3)(x+4)(x-10)(x+14) + 20 = \text{degree 4} \]
\[f(x) = -3x^7 + 15x^6 - 20x^5 + 125x - 150 \]

17.
\[f(x) = -x^3 + 2x^2 - x + 3 \]
\[f(x) = \frac{1}{2}x(x+3)^3 \]
\[f(x) = (x+3)^3 = \text{degree 4} \]

18.
\[f(x) = x^4 - 4x^3 - 2x^2 + 12x - 3 \]
\[f(x) = 2(x+3)(x+4) = \text{degree 2} \]
\[f(x) = -2x^2 + x^4 - 3x^3 + 12 \]

Neg degrees