Solving Exponential and Logarithm Equations, Day 1

Under each number, rewrite using exponentials:

4	8	9	16	25	27	32	36	64	81	125	1/4	1/8

Solving by Common Base: Exponentials

If possible, rewrite the equation where both sides are expressed as powers of the <u>same</u> <u>base</u>. Then, the exponents will be equal to each other and you can solve. **1.** $7^{6x} = 7^{2x-20}$ **2.** $e^{2x-7} = e^{5x+4}$

3.
$$2^{2x} = 8^{2x-1}$$
 4. $4^x = 32$

5.
$$9^{x-4} = \frac{1}{81}$$
 6. $25^{10x+8} = (\frac{1}{125})^{4-2x}$

Solving by Common Base: Logarithms

If possible, write both sides of the equation with a <u>common base</u> and set the arguments (power) equal to each other.

7. $\log_5(x+7) = \log_5(2x-3)$ **8.** $\log_5(x+7) = \log_5(2x-3)$

8. $\log_4(3x + 2) = \log_4(6-x)$

If the common base is not possible, <u>use log properties</u> and write your equation as a <u>single log and convert to an exponential</u>. If <u>exponential then isolate and</u> <u>convert to a logarithm</u> and solve.

9. $\log_4(3x-5) = 3$ **10.** $\ln(x-1) - \ln x = 2$

11. $\log_4(x-3) + \log_4(X+3) - \log_4(x+3) = 3$

12. 5 – 3e^x = 2

13. e^{lnx} = 4

14. $(6)^{-4x} + 1 = 6$

15. 6+ 3lnx = 4