RULES FOR GRAPHING RATIONAL FUNCTIONS

Rational Function: a function that can be written as the ratio of two polynomials where the denominator is not equal to zero

$$f(x) = \frac{p(x)}{q(x)}$$

Asymptotes:

Horizontal Asymptotes (HA)	Vertical Asymptotes (VA)
Compare the degree of $p(x)$ and $q(x)$	
BOBO	Roots of the denominator
If the degree of the denominator is greater, it's $y = 0$	that do not cancel
BOTN	
If the degree of the numerator is bigger, no HA	(If they cancel, that means it
COCO	has a removable
If the degree of the numerator = the degree of the	discontinuity)
denominator,	
the asymptote is the ratio of the leading coefficients.	

Holes:

Any factor that appears in both the numerator and the denominator will cancel.

A hole occurs when you set that factor equal to zero and solve for x.

To find the y value of the hole, plug the x value back into the simplified equation.

In the example to the right, the hole occurs at (-2, 1).

$$y = \frac{(x+2)}{(x+3)(x+2)}$$

$$X+2 = 0$$

$$X = -2$$
Hole occurs when x = -2
Plug in -2 for x in the
simplified equation.

$$y = \frac{1}{(-2+3)}$$

Y = 1

Domain: the domain of a rational function is all real numbers except for the x values of the vertical asymptotes and the x-coordinate of the hole.

Range: The range of a rational function is all real numbers except for the y values at horizontal asymptotes and the y-coordinate of the hole.