RULES FOR GRAPHING RATIONAL FUNCTIONS

Rational Function: a function that can be written as the ratio of two polynomials where the denominator is not equal to zero

$$
f(x)=\frac{p(x)}{q(x)}
$$

Asymptotes:

Horizontal Asymptotes (HA)	Vertical Asymptotes (VA)
Compare the degree of $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$	Roots of the denominator that do not cancel
BOBO	(If they cancel, that means it has a removable If the degree of the denominator is greater, it's $\mathrm{y}=0$
BOTN	If the degree of the numerator is bigger, no HA
COCO	
If the degree of the numerator $=$ the degree of the denominator, the asymptote is the ratio of the leading coefficients.	

Holes:

Any factor that appears in both the numerator and the denominator will cancel.

A hole occurs when you set that factor equal to zero and solve for x.

To find the y value of the hole, plug the x value back into the simplified equation.

In the example to the right, the hole occurs at $(-2,1)$.

$$
\begin{gathered}
y=\frac{(x+2)}{(x+3)(x+2)} \\
x+2=0 \\
x=-2
\end{gathered}
$$

Hole occurs when $x=-2$
Plug in -2 for x in the simplified equation.

$$
\begin{aligned}
& y=\frac{1}{(-2+3)} \\
& Y=1
\end{aligned}
$$

Domain: the domain of a rational function is all real numbers except for the x values of the vertical asymptotes and the x-coordinate of the hole.

Range: The range of a rational function is all real numbers except for the y values at horizontal asymptotes and the y-coordinate of the hole.

