\qquad

To solve a polynomial inequality such as $x^{2}-2 x-3<0$, you can use the fact that a polynomial can only change signs at its zeroes (roots). Between two consecutive zeroes, a polynomial must be entirely positive or entirely negative. We will call these intervals test intervals.

Step 1: Find the zeroes for the polynomial (by factoring) in the inequality $x^{2}-2 x-3<0$ and mark them on the number line. These are called critical numbers.

$$
\begin{aligned}
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0
\end{aligned}
$$

Roots: $x=3, x=-1$

Solution:

Step 2: Sketch the graph
Step 3: Choose convenient values between your critical numbers to test the value of the expression $x^{2}-2 x-3$. Note whether your result is positive or negative for each test interval.

Step 4: For which test interval(s) was the result negative? This is the interval where $\mathrm{x}^{2}-2 \mathrm{x}-3<0$.

1) Solve $x^{2}-x-6 \leq 0$

Solution:
2) Solve $2 x^{3}-3 x^{2}-32 x>-48$

Solution:

(Hint: factor by grouping)
3) Solve $x^{3}+10 x^{2}-24 x \leq 0$
4) Solve $x^{2}>-2 x-4$

Solution:

5) Solve $x^{3}-2 x^{2}-9 x+18 \leq 0$

Solution:
6) Solve $x^{3}-13 x^{2}+30 x<0$

