Name:____

PAP Algebra 2 Notes Polynomial Inequalities

To solve a polynomial inequality such as $x^2 - 2x - 3 < 0$, you can use the fact that a polynomial can only change signs at its zeroes (roots). Between two consecutive zeroes, a polynomial must be entirely positive or entirely negative. We will call these intervals <u>test intervals</u>.

Step 1: Find the zeroes for the polynomial (by factoring) in the inequality $x^2 - 2x - 3 < 0$ and mark them on the number line. These are called <u>critical numbers</u>.

 $x^{2} - 2x - 3 = 0$ (x-3)(x+1)= 0 Roots: x = 3, x= -1 $\xrightarrow{-5 \ -4 \ -3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6}$

Solution:

Step 2: Sketch the graph

Step 3: Choose convenient values between your critical numbers to test the value of the expression $x^2 - 2x - 3$. Note whether your result is positive or negative for each test interval.

Step 4: For which test interval(s) was the result <u>negative</u>? This is the interval where $x^2 - 2x - 3 < 0$.

1) Solve $x^2 - x - 6 \le 0$

Solution:

(Hint: factor by grouping)

Solution:

3) Solve $x^3 + 10x^2 - 24x \le 0$

4) Solve $x^2 > -2x - 4$

Solution:

5) Solve $x^3 - 2x^2 - 9x + 18 \le 0$

Solution:

6) Solve $x^3 - 13x^2 + 30x < 0$

Solution:

Solution: