\qquad
Notes: Intro to Rational Functions
What does it mean for a function to be undefined?
Identify the value of \mathbf{x} that makes the function undefined.

1. $f(x)=-\frac{3}{4 x}$
2. $f(x)=\frac{x}{x-2}$
3. $f(x)=\frac{1}{12-x}$
4. $f(x)=-\frac{6}{5+x}$

How did you determine the values of x that made the function undefined?

Vocabulary

Rational Function -

Horizontal Asymptote -

Vertical Asymptote -

Explore: 1. Graph the function $f(x)=\frac{1}{x}$.

a) Is the graph of $f(x)=\frac{1}{x}$ a continuous graph? Explain.
b) Does the graph of $f(x)=\frac{1}{x}$ intersect the x-axis? Explain.
c) Does the graph of $f(x)=\frac{1}{x}$ intersect the y-axis? Explain.
d) Is the graph of $f(x)=\frac{1}{x}$ a function? Explain.
e) As $x \rightarrow-\infty$, what happens to the y-values?
f) As $x \rightarrow \infty$, what happens to the y-values?
g) State the domain and range of the function using all three representations.
2. Graph the function $g(x)=\frac{1}{x^{2}}$.

a) Is the graph of $f(x)=\frac{1}{x}$ a continuous graph? Explain.
b) Does the graph of $f(x)=\frac{1}{x}$ intersect the x-axis? Explain.
c) Does the graph of $f(x)=\frac{1}{x}$ intersect the y-axis? Explain.
d) Is the graph of $f(x)=\frac{1}{x}$ a function? Explain.
e) As $x \rightarrow-\infty$, what happens to the y-values? f) As $x \rightarrow \infty$, what happens to the y-values?
g) Can you ever have a negative output for the function? Explain.
h) State the domain and range of the function using all three representations.

Rational Transformations $f(x)=\left(\frac{A}{B(x-C)}\right)+D$ or $f(x)=A\left(\frac{1}{B(x-C)}\right)+D$
Affects of "A" -
Affects of "B" -

Affects of "C" -

- The "C" value changes the \qquad asymptote and restricts the \qquad .

Affects of "D" -

- The "D" value changes the \qquad asymptote and restricts the \qquad .
***Do not forget the transformation order: Reflections, Stretches/Compressions, Translations.

For the following functions, graph and list the transformations, asymptotes, and domain and range.

1. $y=-\frac{1}{x^{2}}+5$

Trans:
VA: \qquad HA: \qquad
Domain: \qquad
Range: \qquad
3. $y=-\frac{1}{(x+5)}$

Trans:
VA: \qquad HA: \qquad
Domain: \qquad
Range: \qquad
2. $y=\frac{1}{x-2}+1$

Trans: \qquad
VA: \qquad HA: \qquad
Domain: \qquad
Range: \qquad
4. $y=\frac{1}{(x+2)^{2}}-1$

Trans: \qquad
VA: \qquad HA: \qquad
Domain: \qquad
Range: \qquad
5. Vertical asymptote at $\mathrm{x}=2$ and a horizontal asymptote at $\mathrm{y}=0$.
6. Vertical asymptote at $x=-5$ and a horizontal asymptote at $y=4$.
7. The domain is all real numbers except $x=6$. The range is all real numbers except $y=-3$.

Identify the vertical asymptotes from the following table.
8.

x	-4	-3	-2	-1	0	1	2
$f(x)$	-1	$-3 / 2$	-3	Und.	3	$3 / 2$	1

Transformations from a Transformed Graph
Desmos link: http://bit.ly/2BCZNKr . Sketch the following graphs by changing the sliders.

Sketch the original function given.

2. Change the B slider to -1. Graph $f(-x)$.

1. Change the A slider to -1. Graph $-f(x)$.

2. Change the D slider to -3. $\operatorname{Graph} f(x)-3$.

3. Change the C slider to 4 and the D slider to 2 .

Graph $f(x-4)+2$.

6. Graph $-f(x-2)+1$.

5. Change the B slider to -1 and D slider to -2 .

$$
\text { Graph f(-x) - } 2
$$

7. $\operatorname{Graph} f(x+5)-4$.

Things to think about from this activity...

- What type of transformations made the vertical asymptote change from the original graph? How did that affect the domain?
- What type of transformations made the horizontal asymptote change from the original graph? How did that affect the range?
- What do vertical reflections do to the original graph?
- What do horizontal reflections do to the original graph?

