4.1 Transformations of Cubic Functions Practice

For \#1-9: List the transformations, make a table of critical points, and sketch the graph.

1. $f(x)=x^{3}-3$

2. $f(x)=\frac{1}{3}(x+5)^{3}$

3. $f(x)=0.25 x^{3}$

4. $f(x)=-x^{3}+4$
5. $f(x)=(x-5)^{3}-2$

6. $f(x)=-\frac{1}{2}(x+1)^{3}-2$

7. $f(x)=2(x+1)^{3}-3$

For \#10-15: Answer each question.
10. The graph of $f(x)=x^{3}$ has been transformed so that its critical point is $(4,-1)$. What is the equation?
11. The graph of $f(x)=x^{3}$ has been transformed so that its critical point is still $(0,0)$, but it now goes through the point $(1,5)$. What is the new equation?
12. The graph of $f(x)=x^{3}$ has been shifted left 4.4 units, down 0.5 units, and is upside-down. What is the new equation?
13. The graph of $f(x)=x^{3}$ has been transformed so that its critical point is $(4,0)$, and goes through $(3,2) \&(5,-2)$. What is the new equation?
14. The graph of $f(x)=x^{3}$ has been transformed so that its critical point is on the y axis and it goes through the points $(-1,2)$ and $(1,4)$. What is the new equation?
15. If the critical point of a cubic function is $(1,1)$ can the graph go through the points $(0,0)$ and $(2,3)$? If so what is the equation? If not, explain why.

