Practice: Solving Absolute Value Equations and Inequalities

Solve the following absolute value equations and inequalities. Be sure to check for extraneous solutions, if applicable.

1. $|4 x-7|<9$
2. $|1-2 x|=9$
3. $|5-6 x|+3=10$
4. $\left|\frac{1}{3} x+4\right|>1$
5. $2|2 x+6|=24$
6. $|2-3 x| \geq \frac{2}{3}$
7. $\frac{1}{2}\left|\frac{2}{3} x+2\right|=0$
8. $2|3 x-3|-2=14$
9. $\left|4-\frac{1}{2} x\right| \leq 6$
10. Yard lines of a football field have the relationship shown in the table below (0 yard lines are the goal lines).

FOOTBALL FIELD YARD LINES

Distance from one endzone (yd)	0	10	20	30	40	50	60	70	80	90	100
Marked yard line	0	10	20	30	40	50	40	30	20	10	0

a. Write an absolute value function to find the marked yard line for a given distance from the endzone. (Hint: Graph the given ordered pairs to find the transformation from the parent function)
b. What yard line is 65 yards from the endzone?

