Name:	_ Period:	_ Date:
-------	-----------	---------

Practice: Solving Absolute Value Equations and Inequalities

Solve the following absolute value equations and inequalities. Be sure to check for extraneous solutions, if applicable.

1. |4x - 7| < 92. |1 - 2x| = 93. |5 - 6x| + 3 = 10

4.
$$\left|\frac{1}{3}x+4\right| > 1$$
 5. $2|2x+6| = 24$ 6. $|2-3x| \ge \frac{2}{3}$

7.
$$\frac{1}{2} \left| \frac{2}{3}x + 2 \right| = 0$$

8. $2|3x - 3| - 2 = 14$
9. $\left| 4 - \frac{1}{2}x \right| \le 6$

10. Yard lines of a football field have the relationship shown in the table below (0 yard lines are the goal lines).

Distance from one endzone (yd)	0	10	20	30	40	50	60	70	80	90	100
Marked yard line	0	10	20	30	40	50	40	30	20	10	0

FOOTBALL FIELD YARD LINES

a. Write an absolute value function to find the marked yard line for a given distance from the endzone. (Hint: Graph the given ordered pairs to find the transformation from the parent function)

b. What yard line is 65 yards from the endzone?