5.4 Factoring Higher Order Polynomials

1. <u>Factoring Difference of Squares</u> $a^2 - b^2 = (a + b)(a - b)$ $x^2 - 64$ $25x^2 - 16$

$$x^8 - 1$$
 $x^4 - y^4$

2. Factoring Trinomials

$x^2 - 10x + 9$ $x^4 - 10x^2 + 9$

$x^2 - 29x \pm 100$	$x^4 - 29x^2 + 100$
X Z9X + IUU	$X^{-} = Z 9 X^{-} + 100$

$16x^2 - 80x + 100$	9x ² + 6x + 1

 $6x^4 - 15x^3 + 6x^2$

3. Factoring by Grouping, continue to check for GCF.

 $10x^2 - 15x + 8x - 12$

Grouping

 $2x^3 + 6x^2 - 2x - 6$

Grouping

 $20x^4 + 12x^3 + 10x^2 + 6x$

Grouping

 $x^4 - 4x^3 - x^2 + 4x$

Grouping

4. Factoring the sum and difference of cubes.

*There is a formula, see page 451 in your book to see why these formulas work. This formula is on your formula chart.

 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Remember your signs with SOAP: Same Opposite Always Positive

 $8x^3 - 125$ $x^3 + 27$

27x³ - 64

125x³ +1

Practice Problems: Factor completely!

1. $x^3 + 64$

2. $25x^2 - 30x - 7$

3. 27x³ - 64

4. $24x^4 - 8x^3 + 21x^2 - 7x$