### 5.4 Factoring Higher Order Polynomials

1. Factoring Difference of Squares $a^{2}-b^{2}=(a+b)(a-b)$
$x^{2}-64$
$25 x^{2}-16$
$\mathbf{x}^{8}-1$

$$
x^{4}-y^{4}
$$

## 2. Factoring Trinomials

$x^{2}-10 x+9$
$x^{4}-10 x^{2}+9$
$x^{2}-29 x+100$
$\mathbf{x}^{4}-\mathbf{2 9} x^{2}+100$
$16 x^{2}-80 x+100$
$9 x^{2}+6 x+1$

$$
6 x^{4}-15 x^{3}+6 x^{2}
$$

3. Factoring by Grouping, continue to check for GCF.
$10 x^{2}-15 x+8 x-12$
Grouping
$2 x^{3}+6 x^{2}-2 x-6$
Grouping
$20 x^{4}+12 x^{3}+10 x^{2}+6 x$
Grouping
$x^{4}-4 x^{3}-x^{2}+4 x$
Grouping
4. Factoring the sum and difference of cubes.
*There is a formula, see page 451 in your book to see why these formulas work. This formula is on your formula chart.
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Remember your signs with SOAP: Same Opposite Always Positive
$8 x^{3}-125$

$$
x^{3}+27
$$

$27 x^{3}-64$
$125 x^{3}+1$

## Practice Problems: Factor completely!

1. $x^{3}+64$
2. $25 x^{2}-30 x-7$
3. $27 x^{3}-64$
4. $24 x^{4}-8 x^{3}+21 x^{2}-7 x$
