Explain - Radian Measure

PAP Algebra 2

Degrees versus Radians

One radian is the measure of the central angle θ that intercepts an arc s equal in length to the radius r of the circle.

The radian measure of one full revolution is $360^{\circ} = 2\pi$ or $180^{\circ} = \pi$

<u>Converting between degrees and radians:</u> You can convert from degrees to radians and back.

Degrees to Radians: Multiply the degree measure by $\frac{\pi}{180}$

Radians to Degrees: Multiply the radian measure by $\frac{180}{\pi}$

Examples:

- 1. Convert the following angles from degree to radian measure in terms of $\boldsymbol{\pi}.$
 - a. 45°

b. 135°

c. 225°

- d. 315⁰
- 2. Convert the following angles from radian measure to degree.
 - a. $\frac{\pi}{6}$

 $5. \quad \frac{5\pi}{3}$

Evaluate

Give the degree measure of each:

1.
$$\frac{\pi}{4}$$

2.
$$\frac{\pi}{6}$$

3.
$$\frac{2\pi}{3}$$

4.
$$\frac{3\pi}{4}$$

5.
$$\frac{11\pi}{4}$$

Convert each degree measure to radians. Leave in terms of pi.

$$\textbf{6.}\ \textbf{115}^{\circ}$$

10.
$$54^{\circ}$$

$$11.\,\,180^{^\circ}$$