\qquad

Factor Theorem

Let a polynomial $f(x)$ be divided by $x-a$. If the remainder is 0 , then $x-a$ is a factor of $f(x)$.
Ex 1. Let $f(x)=3 x^{3}-4 x^{2}-28 x-16$. Is $(x+2)$ a factor?

Ex 2: Synthetic division can also be used to help us factor and solve polynomials.
Given that $(x+3)$ is a factor of $f(x)=2 x^{3}+9 x^{2}+10 x+3$.
Step 1: Divide out the factor.

Step 2: Factor the Quadratic expression left.

Step 3: List all three factors.

Step 4: Determine the zeros, or roots.

Ex 3: Factor $f(x)=x^{3}-18 x^{2}+95 x-126$ given that $(x-9)$ is a factor.

Ex 4: Factor $f(x)=2 x^{3}+3 x^{2}-39 x-20$ given that -5 is a zero of $f(x)$.

Ex 5: Show that ($3 x-2$) is a factor of $3 x^{3}-8 x^{2}+16 x-8$. Can you use Synthetic?

Remainder Theorem

If a polynomial $f(x)$ is divided by $x-a$, the remainder is the constant $f(a)$.
So to find $f(a)$ you can do synthetic division of the polynomial with the "a" value. And,

$x-a) \frac{q(x)}{f(x)}$
$\frac{\text { WORK }}{f(a)}$

$f(x)=q(x) \cdot(x-a)+f(a)$ where $q(x)$ is a polynomial with degree one less that the degree of $f(x)$.
To find the y-value for $f(a)$, divide $f(x)$ by (x-a) and your reminder is the answer.

Ex 6: Let $f(x)=2 x^{4}-x^{3}+4$. Show that $f(-1)$ is the remainder when $f(x)$ is divided by ($\mathrm{x}+1$).

Ex 7: Let $f(x)=x^{3}+5 x^{2}-7 x+2$. Find f(2).

