\qquad
Problems:

1. $x^{2}=-8 y$	2. $(x-2)^{2}=24 y$	3. $(y-3)^{2}=-12(x-2)$

	Direction	Vertex	AOS	Domain	Range	p	Focus	Directrix
$\mathbf{1}$								
$\mathbf{2}$								
$\mathbf{3}$								

4. You have created a new laser by taking the equation $x^{2}=y$ moving it right 4, down 2 and placing the focus 3 units from the vertex. What is the equation of your laser?
5. Steve Jobs has asked you to do some consulting on a secret project for Apple. The next ipod, the ipod wireless needs to have a parabola inside of it to communicate with the Apple satellite system. Mr. Jobs needs you to write the equation of a parabola with vertex at $(5,1)$ and directrix $x=6$.

Given the following information, write the equation of the parabola
6. Vertex $(-3,-2) \quad$ Focus $(1,-2)$

$P=$ \qquad

Equation: \qquad
7. Vertex $(5,4) \quad$ Directrix : $y=1$

Parabola Conics Form:
Vertical: $(x-h)^{2}=4 p(y-k)$
Horizontal: $(y-k)^{2}=4 p(x-h)$

$$
P=
$$

Equation: \qquad

