PAP Algebra 2

Annual Percentage Rates:

Now that you are experts at finding percents, let's apply that knowledge to comparing credit cards. Card A has an APR of 10\%. Card B has an APR of 25\%. Card C has an APR of 50\% (this is realistic for illegal enterprises, and payday loans.) Let's say you start off with a $\$ 100$ balance on all cards, and you are not making any payments (cause you're bad like that). How much will you owe in each year?

1. Complete the table.

Year	Card A	Card B	Card C
0	100	100	100
1			
3			
5			
10			
20			
x (type into Y1)			

2. Create a graph in your calculator that shows the balances of all 3 credit cards.

Use the following window
Xmin: 0
Xmax: 12
Ymin: 0
Xscl: 1
Ymax: 950
Yscl: 50
3. Using your calculator, find the year in which the amount you owe doubles for each card.

Card A \qquad Card B \qquad Card C \qquad
4. What would be the interest rate on a card that, on an initial balance of $\$ 100$, owed $\$ 228.78$ after 5 years, and $\$ 523.38$ after 10 years?

```
STAT 1:edit L1:x L2:y
STAT -> 0: ExpReg
```

In reality, interest on a credit card isn't only charged once a year. Let's investigate how it's really calculated. Suppose you charge \$1,000 on a card that charges $\mathbf{1 2 \%}$ APR.
5. Complete the Table:

Frequency of Calculation	\#of Times Interest is Calculated per Year	Interest Rate per Period at 12% APR	Expression for Balance after x years	Account Balance After 5 Years
Annual				
Semi- Annual				
Quarterly				
Monthly				
Weekly				

6. Try to write an expression using only variables, for the account balance A, after t years, on an initial charge P, at an annual percentage rate r, calculated n times a year.
7. A dastardly accountant at the credit card company notices that if they charge interest more frequently, they will earn more money. (Sure, not much, but if they do it to everybody...) How frequently will they have to charge $\mathbf{1 2 \%}$ interest in order for you to owe $\$ 1128$ after one year? Complete the table.

Frequency of Calculation	\# of Times Interest is Calculated per Year	Interest Rate Each Period	Expression for Balance on \$1000 after 1 year	Account Balance on \$1000 after 1 Year
Daily				
Hourly				
Minute-ly				

What?! There doesn't seem to be a way to even reach $\$ 1127.50$! What if we could charge interest all the time? Surely, if we could compound the interest infinite times per year, we could make infinite dollars. Sounds pretty amazing.
8. To investigate, let's consider a very simple example. 100% APR, on a $\$ 1$ charge over 1 year for more and more frequent compounding. Show at least four decimal places.

\# of times compounded in the year (n)	10	1000	10,000	100,000	$1,000,000$
Substitute: $\left(1+\frac{1}{n}\right)^{n}$					
Evaluate to 4 places					

Sorry, accountant, but your little scheme just got shut down!!! There is a limit to how much interest they can earn, despite very frequent compounding.
9. As n approaches ∞, this value is called e.

Approximate e to three decimal places: \qquad

That is very unfortunate for the accountant. It seems that we can't earn $\$ \infty$. Darn!!! The constant e is used in situations that involve continuous growth such as...

- Growth of the body or any living organism
- Population growth (of very large populations)
- Half life of an organic compound (carbon dating)

Continuous compound growth is modeled with:

$$
\mathbf{A}=\mathbf{P} \mathbf{e}^{r t}
$$

...where P represents the initial value, r represents the growth rate, t represents units of time, and A represents the ending value.

Apply your knowledge:

1. You owe $\$ 200$ on a debt with 16% APR, compounded monthly. How much will you owe after 2 years? Try to do this by evaluating a single expression. Write down the expression as well as the answer.
\qquad
\qquad
2. Suppose you invest $\$ 1,050$ at an annual interest rate of 5.5% compounded continuously. How much money, to the nearest dollar, will you have in the account after five years? (Financial institutions will not, in general, offer interest rates that are compounded continuously)
3. According to statistical surveys, the annual growth rate in the world population in recent years is about 1.7%. There were about 5.3 billion people living on this planet in 1990.

Unlike bank accounts, the compounding of population growth does not take place annually or quarterly. It's going on all the time. Every second of every hour, people are being born and others are dying. Thus, the growth rate (the overall effect of all of those births and deaths) can be viewed as a continuous process.

If the same growth rate continues, how many people will inhabit the Earth by 2012 ?
4. You deposit $\$ 1,000$ in a college fund that pays 6.1% interest compounded quarterly. Find the account balance after 5 years. Write down the expression as well as the answer.
5. Suppose you have $\$ 1,500$ in a savings account that pays 4.7% annual interest. Find the account balance after 25 years with the interest compounded semi-annually.
6. You deposit $\$ 4,500$ into an account earning 3.6%, compounded quarterly. How much will be in the account after 12 years?

