PROBLEM 3 Inverse by Composition

You know that when the domain is restricted to $x \geq 0$, the function $f(x)=\sqrt{x}$ is the inverse of the power function $g(x)=x^{2}$. You also know that the function $h(x)=\sqrt[3]{x}$ is the inverse of the power function $q(x)=x^{3}$.

The process of evaluating one function inside of another function is called the composition of functions. For two functions f and g, the composition of functions uses the output of $g(x)$ as the input of $f(x)$. It is notated as $(f \circ g)(x)$ or $f(g(x))$.

To write a composition of the functions $g(x)=x^{2}$ and $f(x)=\sqrt{x}$ when the domain of $g(x)$ is restricted to $x \geq 0$, substitute the value of one of the functions for the argument, x, of the other function.

You can write the composition of these two functions as $f(g(x))=x$ for $x \geq 0$.

1. Determine $g(f(x))$ for the functions $g(x)=x^{2}$ and $f(x)=\sqrt{x}$ for $x \geq 0$.

If $f(g(x))=g(f(x))=x$, then $f(x)$ and $g(x)$ are inverse functions.
2. Are $f(x)$ and $g(x)$ inverse functions? Explain your reasoning.
3. Algebraically determine whether each pair of functions are inverses. Show your work.
a. Verify that $h(x)=\sqrt[3]{x}$ is the inverse of $q(x)=x^{3}$.
b. Determine if $k(x)=2 x^{2}+5$ and $j(x)=-2 x^{2}-5$ are inverse functions.
4. Mike said that all linear functions are inverses of themselves because $f(x)=x$ is the inverse of $g(x)=x$.
Is Mike correct? Explain your reasoning.

