PROBLEM 3 Inverse by Composition

You know that when the domain is restricted to $x \ge 0$, the function $f(x) = \sqrt{x}$ is the inverse of the power function $g(x) = x^2$. You also know that the function $h(x) = \sqrt[3]{x}$ is the inverse of the power function $q(x) = x^3$.

The process of evaluating one function inside of another function is called the **composition** of functions. For two functions *f* and *g*, the composition of functions uses the output of g(x) as the input of f(x). It is notated as $(f \circ g)(x)$ or f(g(x)).

1. Determine g(f(x)) for the functions $g(x) = x^2$ and $f(x) = \sqrt{x}$ for $x \ge 0$.

If f(g(x)) = g(f(x)) = x, then f(x) and g(x) are inverse functions.

2. Are f(x) and g(x) inverse functions? Explain your reasoning.

- 3. Algebraically determine whether each pair of functions are inverses. Show your work.
 - **a.** Verify that $h(x) = \sqrt[3]{x}$ is the inverse of $q(x) = x^3$.

b. Determine if $k(x) = 2x^2 + 5$ and $j(x) = -2x^2 - 5$ are inverse functions.

Ś,	

4. Mike said that all linear functions are inverses of themselves because f(x) = x is the inverse of g(x) = x.

Is Mike correct? Explain your reasoning.